case for the downgrading procedure illustrated in Figure 7.
Here, the input and output Tles are hard-coded. (Note that a
more general downgrading function might permit the input
and output Tles to be function parameters, in which case the
results would parallel those of the guard.) Writing from a
high input to a low output violates the type inference rules
and no type results, as indicated by (?). As in the case of the
guard, the editor has identiTed code for which further
analysis is needed. Ideally, such code should be isolated in
its own domain to be executed by multilevel subjects, while
the remainder of the application can be executed by single-
level subjects.

4. Summary

In this paper, we have presented ongoing work to
develop a practical tool to assist the developers of trusted
applications. Our tool does not take the place of the careful
design and analysis that should be applied to the
development of TCB software, however, it does permit
software developers to isolate code which violates policy
from that which is benign. We anticipate that the editor
could be employed in the development of very large
software applications and that, as is the case with all other
tools used in the development of trusted systems, the editor
would be maintained under a life-cycle assurance program
commensurate with the target evaluation class of the
intended trusted application. Software certiTed by the editor
provides an additional level of conTdence that the security
policy will not be violated. This can be especially important
in environments where the same code is executed by both
single-level and multilevel subjects.

Currently, the editor implements only that part of the type
system that guarantees programs do not violate explicit
information tow policy . We plan to extend the system to
handle what Denning calls implicit information tows as
well. This will address legitimate channels by which
processes can transmit information between security classes
[12]. Some progress has been made in this regard. However,
covert channels will not be considered. Finally, in some
cases, the system may claim there is a violation when really
there is not. This is also true of Denning’s system [6] and is
a consequence of the unsolvability of deciding security.

References

[1] Department of Defense Trusted Computer System Evaluation
Criteria, DoD 5200.28-STD, National Computer
Security Center, June 1985

[2] Bell, D.E. and LaPadula, L.J., Secure Computer Systems:
Mathematical Foundations, Vol. I-111, ESD-TR-73-278,
The MITRE Corp., Bedford Mass.

[3] Brix, H. and Dietl, A., “Formal Construction of Provably
Secure Systems With Cartesiana” Proc. 1990 IEEE
Symp.on Security and Privacy, Oakland, CA, May 1990,
pp- 319-331.

[4] Denning, D., Secure Information Flow in Computer Systems,

Ph.D. thesis, Purdue University, May 1975.

[5] Denning, D., “A Lattice Model of Secure Information Flow,”
Communications of the ACM, 19, 5, 1976, pp. 236-242.

[6] Denning, D. and Denning, P., “CertiTcation of Programs for
Secure Information Flow,” Communications of the
ACM, 20,7, 1977, pp. 504-513.

[7] Denning, D., “Cryptographic Checksums for Multilevel
Database Security,” Proc. 1984 IEEE Symposium on
Security and Privacy, Oakland, CA, April 1984, pp. 52-
61.

[8] Denning, D., Private communication, March 1995.

[9] Fuh, Y.C. and Mishra, P., “Type Inference with Subtypes,”
Theoretical Computer Science, 73, 1990, pp. 155-175.

[10] Gordon, M., “HOL, A Proof Generating System for Higher-
Order Logic,” in VLSI Specification, Verification and
Synthesis, G. Birtwistle and P. Subrahmanyam, (Eds.),
1988, pp. 73-128.

[11] Irvine, C. E., “A Multilevel File System for High
Assurance,” Proc. 1995 IEEE Symp.on Security and
Privacy, Oakland, CA, May 1995, pp. 78-87.

[12] Lampson, B., A Note on the ConTnement Problem,
Communications of the ACM, 16, 10, 1973, pp. 613-615.

[13] Schell, R. R., and Brinkley, D., “Concepts and Terminology
for Computer Security,” in Information Security: an
Integrated Series of Essays, M. Abrams, S. Jajodia, and
H. Podell (Eds.), IEEE Computer Society Press, Los
Alamitos, CA, 1995, pp. 40-97.

[14] Smith, G. S., Polymorphic Type Inference for Languages
with Overloading and Subtyping, Ph.D. Thesis,
Department of Computer Science, Cornell University,
Technical Report 91-1230, 1991.

[15] Stansifer, R., “Type Inference with Subtypes,” Proc. 15th
ACM Symposium on Principles of Programming
Languages, 1988, pp. 88-97.

doing something undesirable without users ever knowing it.
When our system is used to develop code, however, it alerts
one to rogue programs like this one.

3.0.2 A guard: Observe that in the rogue Tle copy
example, the editor did not detect a policy violation in the
procedure. It merely concluded that the rogue procedure
can be used to copy only unclassiTed Tles if policy is not to
be violated. To rid ourselves of this restriction, we can
simply delete the offending put statement to restore the
generality of Tle copy. In some cases, generality cannot be
restored so easily.

File Edit View Tools Options Structure Text Help

Arc. Awe. Af.
let i = ropen(rc, f)in
let ou = wopen (we, OUTPUT_U) in
let oc = wopen (we, OUTPUT _C) in
let os = wopen (we, OUTPUT_S) in
let ot = wopen (we, OUTPUT _T) in
letvar v :=ger (i) in
while v != EOF do
case v of
u: put (v, ou);
c: put (v, oc);
s: put (v, os) ;
t: put (v, ot);
end case;
v = get (i)
end
Vt1t—U— U— unit

l_
Context: exp e<exp> <exp> e fun fix if while
let<id><exp>e let<id>e<exp> letvar<id><exp>e
letvar<id>e<exp> e;<exp> <exp>;e

Figure 6. Guard procedure

As an example, consider a guard. Here we assume the
precise deTnition of a guard as described by Schell,
reported by Denning [7], and described by Schell and
Brinkley [13]. It has to partition the elements of a multilevel
stream according to their security classes. Its operations are
based upon credible access labels which are attributes of the
stream elements and may be certiTed to be in compliance
with security policy. A guard is deTned in Figure 6. Here f

is a multilevel stream and the Tles opened for reading and
writing have the classiTcations suggested by their names.
The type inferred for the guard implies that the guard can be
called only with a single-level input stream consisting
exclusively of unclassiTed values:

Vtt— U —= U— unit

But a guard cannot be limited this way, so in order to
recover its full generality, it must be developed outside of
the editor and veriTed some other way. The editor is useful
in such situations because it helps to identify system
components where more complex forms of analysis are
needed. This greatly reduces the amount of code that has to
be veriTed by more complex techniques. In our system, the
guard would have to be separately veriTed outside the
editor and re-introduced into the system by supplying an
appropriate typing for it, say,

Vt,y withyCt.t— U — vy — unit

Here T corresponds to the read class, rc, of the subject, U to
the subject’s write class, wc, and y to the access class of the
Tle representing the multilevel input stream. This would
permit the guard to be called with multilevel input streams.
An exception would still be raised, though, if it were called
by a subject whose read class is lower than some element in
the stream, or whose write class is not unclassiTed.

File Edit View Tools Options Structure Text Help

Arc. hwc.
let i = ropen (rc, INPUT_TS) in
let 0 = wopen (wc, OUTPUT_S) in
letvar v := get (i) in
while v != EOF do
put(v’ O)a
v = get (i)
end

+

Context: exp e<exp> <exp> e fun fix if while
let<id><exp>e let<id>e<exp> letvar<id><exp>e
letvar<id>e<exp> e;<exp> <exp>;e

Figure 7. Downgrade procedure

3.0.3 A downgrader: Sometimes the editor will detect a
tow policy violation which may be authorized. This is the

File Edit View Tools Options Structure Text Help

l_
A rc. N <id>. <exp>
Vt,5,y.tT—=0—>Yy
._
Context: exp apply fun if while let
letvar ; set! = ~ && Il < + -
< <= > >= = ()

Figure 3. Editor window after supplying rc
and selecting fun again

File Edit View Tools Options Structure Text Help

Are. Awe.Nf. hg.

let i = ropen (rc, f)in
let o = wopen (wc, g) in
letvar v := get (i) in
while v != EOF do

put (v, 0);

v = get (i)

end
V1,d,y,twithyCt,dCm,yCmx.

T—=0— y— m — unit

._

Context: exp e<exp> <exp> e fun fix if while
let<id><exp>e let<id>e<exp> letvar<id><exp>e
letvar<id>e<exp> e;<exp> <exp>;e

Figure 4. Editor window upon completion of
secure copy procedure

Type variable 7 is the type of rc and corresponds to the read
class of the subject, § is the type of wc and corresponds to
the subject’s write class, y is the access class of f, and x the
access class of g. The type indicates that the copy routine is
capable of copying a Tlef, classiTed at level y, to a Tle g at
an equal or higher level zt (y € m) as long as the read class
of the subject dominates f (y & T) and its write class is
dominated by g (8 C 7t), which is what we want. The editor
allows a user to build a program while simultaneously

inferring types at each step.

Now suppose we try to tamper with the procedure by also
copying f'to an unclassiTed Tle OUTPUT_U. We insert the
declaration wopen(wc, OUTPUT_U) and the statement
put(v, h) in the loop body. The result is shown in Figure 5.
Notice what happened to the inferred type. It indicates that
the procedure is not as general as one might have thought.
SpeciTcally, it can copy only unclassiTed Tles:

Vt,nt— U —U—x— unit

If invoked to copy any Tle except an unclassiTed one, it will
raise an exception. In contrast, the type of the original Tle-
copy procedure indicates that it is able to copy Tles
classiTed at any level. The fact that the type of the modiTed
procedure does not retect this desired property is an
indication that the procedure is suspicious.

File Edit View Tools Options Structure Text Help

Arc. Awe.Nf. ANg.
let i= ropen (rc, f) in
let o = wopen (wc, g) in
let & = wopen (we, OUTPUT_U) in
letvar v := ger (i) in
while v != EOF do
put (v, 0) ;
put (v, h) ;
v = get (i)
end
Vi, n.t—=U— U— 1t — unit

+

Context: exp e<exp> <exp> e fun fix if while
let<id><exp>e let<id>e<exp> letvar<id><exp>e
letvar<id>e<exp> e;<exp> <exp>;e

Figure 5. Rogue copy procedure

Consider what would happen if we tried to execute the
rogue procedure without Trst subjecting it to our type
(security) analysis. When called by a multilevel subject, say
with write class unclassiTed and read class secret, and a Tle
f at secret, the procedure will write a secret value to the
unclassiTed Tle OUTPUT_U. Opening OUTPUT_U will
succeed because the subject has write class of unclassiTed.
Unfortunately this is the state of affairs in practice today.
Many programs are being used by multilevel subjects and
they could very well be programs like this rogue procedure

to another Tle whose security class is at least as high. We
will show how the editor we are developing can reveal an
attempt to tamper with the procedure so that it also copies
the input Tle to an unclassiTed third Tle.

Our second example shows that there may be times when
the editor will prohibit some code satisfying a certain
specilcation from being written. The code must therefore
be veriTed within a more expressive logic. The editor can
greatly reduce the amount of code that needs to be veriTed
in this way.

Finally, we illustrate the behavior of the editor when
writing a procedure that downgrades information. In this
case, the editor deems the function insecure. If, in fact, it is
an authorized downgrade, then the function would have to
be veriTed in some other logic as above.

File Edit View Tools Options Structure Text Help

Table 1: Sample Editor Selections

Selection Result Type
fun A <id> <exp> Yo.VB.a—p
while while <exp> do unit
<exp>
end
; <exp>; <exp> Va.o
1l <exp> |l <exp> bool
let let <id> = <exp>in VB.p
<exp>end
letvar letvar <id> := <exp>in Vy.y
<exp>end

<exp>
YVa.a

Context: expList

Figure 1. Initial editor window

3.0.1 Secure file copy: The copy procedure has four
parameters rc, wc, f, and g; rc and wc are the read/write
classes of a multilevel subject, fis the Tle to be copied and
g is the result. Using the editor, we begin with the initial
window in Figure 1. Here <exp> is a placeholder. All
placeholders are delimited by angle brackets.

At each stage, the editor infers a type (security
classiTcation) for the program and displays it below the
program. At this point, the editor reports that the type of the
copy procedure is V a.a because it knows nothing about its
deTnition as yet; it is only a placeholder thus far.

When the user selects <exp> with the mouse, a menu of
choices for the various kinds of expressions appears at the
bottom of the window. These choices permit the user to
elaborate the expression. A sample of the selections and
their results is given in Table 1. One of the choices, fun, is
a function. Selecting it gives us a placeholder for a function
of one argument, as shown in the window of Figure 2.

File Edit View Tools Options Structure Text Help

l_
A <identifier> . <exp>
Vt1.dt—390
——
Context: exp apply fun if while let
letvar ; set! = ~ && Il <= + -
< <= > >= = ()

Figure 2. Editor window after choosing fun

The editor now infers a mapping type for the program but
it still knows nothing as yet about the relationship between
T and . Next we TII in the identiTer placeholder withrc, a
subject’s read class, and select another function for the
expression placeholder, giving the window in Figure 3.

Now we get a type that looks more like the Tnal type of
the copy routine, but without more of the deTnition
available, nothing more can be inferred about its type. We
now complete the deTnition using operations from the
TCB, giving the program in Figure 4.

The type inferred for the program now has three subtype
constraints.

YECT1,0CmyCx

is actually an advanced type system, specilcally, one
supporting polymorphism and subtypes. There is a natural
correspondence between information tow analysis and type
checking. Ordinary types like int and real, for instance,
can be replaced by security classes like L (low) and H
(high). Further, just as int is a subtype of real in a
traditional language, we can regard L as a subtype of H,
retecting the fact that information tow from L to H is
permitted. A type system that supports polymorphism with
respect to types therefore supports polymorphism with
respect to security classes. Such a system affords us an
opportunity to accurately capture information tow in
procedures that accept inputs of arbitrary security classes, a
source of difT'culty in Denning’s original approach.

We are developing an algorithm for deciding whether a
given program has a type in our type system. This amounts
to the algorithm having to I'nd a type derivation for the
program, using the rules of the type system. If a derivation
cannot be found, then, since the rules characterize secure
information tow , the algorithm reports that the program has
an illicit tow with respect to a given tow policy . If a
derivation can be found, then the algorithm reports that the
program is secure by inferring a type for the program. The
type reveals any tow assumptions, as subtype constraints,
that are needed in the derivation.

We intend to implement the complete algorithm as a
language-sensitive editor for a traditional block-structured
language. This kind of editor is smart in that as a program is
edited, it can be analyzed behind the scenes so that a
programmer receives immediate feedback. The editor is
said to be language sensitive because these analyses may
determine whether a program satisT'es certain restrictions of
the language and, in some cases, even correct it if it fails to
do so. We describe below a prototype language-sensitive
editor that we are building for a subset of the full type
system for secure information tow . It illustrates some
important features of the algorithm we have developed thus
far. We give editor snapshots that show how the editor
responds to certain inputs during the course of writing some
sample programs.

3. Sample Applications Using the Editor

Before showing how the editor behaves, we must Trst
describe briety some technical details of the type system on
which the editor is based.

We take as our types the security classes U, C, S, and T8,
ordered according to the following subtype relation:
vc cc §SCTS.

Intuitively, what this means is that U is a subtype of TS
since tows from U to TS are permitted. These types form

the primitive or base types of the system and may vary from
one tow policy to another . There is a form of type in the
system called a type scheme and it has the form

Vao,..,a,withk. t

The variables a.,... o, are called type variables and are
universally quantiTed. For our purpose, they can be
assumed to range over the primitive types. The set x is a set
of subtype constraints, expressed at the level of type
variables and primitive types. For example, a € U is a
constraint that conveys a is a subtype of U. The symbol t
stands for a data type, which for our purpose, will consist
only of a mapping type written T{ — T,. An object of this
type is a procedure that maps elements of type t; to
elements of type T,.

In our examples, we use operations from a hypothetical
trusted computing base, or TCB. Among these are
operations for opening Tles, for reading (ropen) and writing
(wopen), and 1/O (get and put). Ropen expects a subject’s
read class (rc) and a Tle to be opened and ensures that the
read class dominates the access class of the Tle. On the
other hand, given a subject’s write class (wc) and a Tle to be
opened, wopen ensures that the access class of the Tle
dominates the write class.

We adopt get and put as our input and output operations;
get (i) returns the next element of the input Tle descriptor i,
and put (v, o) writes value v to the output Tle descriptor o.
Each of these operations has a type built into the editor. For
example, put expects to be called with a value classiTed at
some level, say (3, and a Tle descriptor classiTed at least as
high, say §, and writes the value to the Tle. This is conveyed
by the type scheme

V 3,0 with p C 0. p — 0 — unit

Here the type unit indicates that put is executed only for its
effect and does not return a result. The subtype constraint
ensures the *-property. Consequently, among the allowable
types for put is

C— S — unit

since C C S, but not

S — C — unit

because S is not a subtype of C. Notice that with put typed
as above, we protect it against being called to write down
for a multilevel subject.

We now give three sample programs to illustrate the
editor. Each is intended to be executed by multilevel
subjects. Our Trst example is a secure procedure to copy a
Tle. It copies the elements of a Tle with some security class

A Practical Tool for Developing Trusted Applications

Cynthia E. Irvine

Dennis Volpano

irvine(volpano)@cs.nps.navy.mil
Department of Computer Science, Naval Postgraduate School
Monterey, California 93943

Abstract

We introduce a tool we are developing that will allow
designers of trusted applications to isolate those portions of
a system where an information flow policy is being violated.
The tool is a language-sensitive editor that checks a
program for policy violations incrementally as the program
is developed. What is novel about our approach is that the
checking occurs as a form of type checking.

1. Introduction

Mandatory access control policies are concerned with the
authorizations of individuals to access information based on
its sensitivity. Within the context of automated information
systems, each access by a subject to an object is mediated
based on TIxed labels associated with both. In general,
applications will be executed by single-level subjects. If
viewed from the perspective of the Bell and LaPadula
model [2], a single-level subject will be constrained by the
simple security property and the *-property such that it can
neither obtain read access to objects which it does not
dominate nor gain write access to objects which do not
dominate it, respectively. Most applications, e.g. word
processing systems, software engineering utilities, etc., can
be executed by single-level subjects; in fact, careful
application design can permit even complex multilevel data
structures to be managed by single-level subjects [11].

There are, however, situations in which it is useful to
have applications which are designed to violate the rules of
a system’s security policy enforcement mechanism, but
which are trusted to do so only in a manner commensurate
with externally-established authorizations. For example, in
the case of the *-property of the Bell and LaPadula model
[2], the application would be designed so that, when
executed by a subject with a range of access classes, viz. a
multilevel subject, the subject could read from an object
with a high access class label and write to an object with a
lower one. The multilevel subject will be constrained by the
underlying mandatory policy, enforced through
comparisons with the class deTning the upper bound of its
range on read accesses and by the lower bound of its range
for write accesses.

Trusted applications are specilcally designed to be

executed by multilevel subjects and are part of a system’s
trusted computing base (TCB). Careful security
engineering of the combined trusted application and TCB
will provide measurable assurance that the trusted
application will behave as speciTed and that its potential to
violate security policy in an arbitrary and perhaps malicious
manner is not realized. Unfortunately, current practice in
the development of large systems does not always treat the
engineering of the code to be executed by multilevel
subjects with adequate rigor. Hence an environment ripe for
the insertion and exploitation of malicious software exists.
This makes certiTcation, software maintenance, and
continued accreditation difTcult. This paper reports
ongoing research to develop a new tool to support the
development of large trusted applications.

Powerful formal systems for reasoning about security
have been studied [3][10]. Given their expressiveness, and
that often useful proof methodologies are missing, these
systems have not been widely adopted in practice. We
believe that this is because the methods offer, at most,
formal systems to reason about security properties;
typically there is no automated support for practitioners.
However, reasoning about whether programs violate
mandatory access control (MAC) policies, such as
articulated in the Bell and LaPadula model [2], does not
require such power. This was observed by Dorothy Denning
in her seminal work on secure information tow in computer
systems. She described a way that compilers could
efIciently check programs for secure implicit and explicit
information tow [5], [6]. Unfortunately, this work was
never widely used in practice, according to Denning [8].

2. An Editor for Trusted Applications

We are developing a new framework to carry out an
extension of the analysis envisioned by Denning. The
framework is a formal system of simple rules with which
one can make judgements about information tow in
programs. What is interesting is that these rules follow
rather directly from a type system for a polymorphic
programming language with subtypes. Many such systems
have been proposed [9][14][15].

So the technical basis for the tool described in this paper

Published in Proceedings Eleventh Annual Computer Security Applications Conference, New Orleans, LA, December
1995, IEEE Computer Society Press, Los Alamitos, CA, pp 190-195.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

